To better understand the defense mechanism of Streptococcus thermophilus against superoxide stress, molecular analysis of 10 menadione-sensitive mutants, obtained by insertional mutagenesis, was undertaken. This analysis allowed the identification of 10 genes that, with respect to their putative functions, were classified into five categories, (i) those involved in cell wall metabolism, (ii) those involved in exopolysaccharide translocation, (iii) those involved in RNA modification, (iv) those involved in iron homeostasis, and (v) those whose functions are still unknown. The behavior of the 10 menadione-sensitive mutants exposed to heat shock was investigated. Data from these experiments allowed us to distinguish genes whose action might be specific to oxidative stress defense (tgt, ossF, and ossG) from those whose action may be generalized to other stressful conditions (mreD, rodA, pbp2b, cpsX, and iscU). Among the mutants, two harbored an independently inserted copy of pGh9:ISS1 in two loci close to each other. More precisely, these two loci are homologous to the sufD and iscU genes, which are involved in the biosynthesis of iron-sulfur clusters. This region, called the suf region, was further characterized in S. thermophilus CNRZ368 by sequencing and by construction of ΔsufD and iscU97 nonpolar mutants. The streptonigrin sensitivity levels of both mutants suggest that these two genes are involved in iron metabolism.